USN-4225-2: Linux kernel (HWE) vulnerabilities

18 January 2020

Several security issues were fixed in the Linux kernel.

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Releases

Packages

  • linux-hwe - Linux hardware enablement (HWE) kernel

Details

USN-4225-1 fixed vulnerabilities in the Linux kernel for Ubuntu 19.10.
This update provides the corresponding updates for the Linux Hardware
Enablement (HWE) kernel from Ubuntu 19.10 for Ubuntu 18.04 LTS.

It was discovered that a heap-based buffer overflow existed in the Marvell
WiFi-Ex Driver for the Linux kernel. A physically proximate attacker could
use this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2019-14895, CVE-2019-14901)

It was discovered that a heap-based buffer overflow existed in the Marvell
Libertas WLAN Driver for the Linux kernel. A physically proximate attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2019-14896, CVE-2019-14897)

It was discovered that the Fujitsu ES network device driver for the Linux
kernel did not properly check for errors in some situations, leading to a
NULL pointer dereference. A local attacker could use this to cause a denial
of service. (CVE-2019-16231)

Anthony Steinhauser discovered that the Linux kernel did not properly
perform Spectre_RSB mitigations to all processors for PowerPC architecture
systems in some situations. A local attacker could use this to expose
sensitive information. (CVE-2019-18660)

It was discovered that the Mellanox Technologies Innova driver in the Linux
kernel did not properly deallocate memory in certain failure conditions. A
local attacker could use this to cause a denial of service (kernel memory
exhaustion). (CVE-2019-19045)

It was discovered that the Intel WiMAX 2400 driver in the Linux kernel did
not properly deallocate memory in certain situations. A local attacker
could use this to cause a denial of service (kernel memory exhaustion).
(CVE-2019-19051)

It was discovered that Geschwister Schneider USB CAN interface driver in
the Linux kernel did not properly deallocate memory in certain failure
conditions. A physically proximate attacker could use this to cause a
denial of service (kernel memory exhaustion). (CVE-2019-19052)

It was discovered that the netlink-based 802.11 configuration interface in
the Linux kernel did not deallocate memory in certain error conditions. A
local attacker could possibly use this to cause a denial of service (kernel
memory exhaustion). (CVE-2019-19055)

It was discovered that the event tracing subsystem of the Linux kernel did
not properly deallocate memory in certain error conditions. A local
attacker could use this to cause a denial of service (kernel memory
exhaustion). (CVE-2019-19072)

It was discovered that the driver for memoryless force-feedback input
devices in the Linux kernel contained a use-after-free vulnerability. A
physically proximate attacker could possibly use this to cause a denial of
service (system crash) or execute arbitrary code. (CVE-2019-19524)

It was discovered that the Microchip CAN BUS Analyzer driver in the Linux
kernel contained a use-after-free vulnerability on device disconnect. A
physically proximate attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2019-19529)

It was discovered that the PEAK-System Technik USB driver in the Linux
kernel did not properly sanitize memory before sending it to the device. A
physically proximate attacker could use this to expose sensitive
information (kernel memory). (CVE-2019-19534)

It was discovered that the DesignWare USB3 controller driver in the Linux
kernel did not properly deallocate memory in some error conditions. A local
attacker could possibly use this to cause a denial of service (memory
exhaustion). (CVE-2019-18813)

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Update instructions

The problem can be corrected by updating your system to the following package versions:

Ubuntu 18.04

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.