USN-5469-1: Linux kernel vulnerabilities

8 June 2022

Several security issues were fixed in the Linux kernel.

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Releases

Packages

Details

It was discovered that the Linux kernel did not properly restrict access to
the kernel debugger when booted in secure boot environments. A privileged
attacker could use this to bypass UEFI Secure Boot restrictions.
(CVE-2022-21499)

Aaron Adams discovered that the netfilter subsystem in the Linux kernel did
not properly handle the removal of stateful expressions in some situations,
leading to a use-after-free vulnerability. A local attacker could use this
to cause a denial of service (system crash) or execute arbitrary code.
(CVE-2022-1966)

Billy Jheng Bing Jhong discovered that the CIFS network file system
implementation in the Linux kernel did not properly validate arguments to
ioctl() in some situations. A local attacker could possibly use this to
cause a denial of service (system crash). (CVE-2022-0168)

Hu Jiahui discovered that multiple race conditions existed in the Advanced
Linux Sound Architecture (ALSA) framework, leading to use-after-free
vulnerabilities. A local attacker could use these to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2022-1048)

Qiuhao Li, Gaoning Pan and Yongkang Jia discovered that the KVM
implementation in the Linux kernel did not properly perform guest page
table updates in some situations. An attacker in a guest vm could possibly
use this to crash the host OS. (CVE-2022-1158)

It was discovered that the implementation of the 6pack and mkiss protocols
in the Linux kernel did not handle detach events properly in some
situations, leading to a use-after-free vulnerability. A local attacker
could possibly use this to cause a denial of service (system crash).
(CVE-2022-1195)

Duoming Zhou discovered that the 6pack protocol implementation in the Linux
kernel did not handle detach events properly in some situations, leading to
a use-after-free vulnerability. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-1198)

Duoming Zhou discovered that the AX.25 amateur radio protocol
implementation in the Linux kernel did not handle detach events properly in
some situations. A local attacker could possibly use this to cause a denial
of service (system crash) or execute arbitrary code. (CVE-2022-1199)

Duoming Zhou discovered race conditions in the AX.25 amateur radio protocol
implementation in the Linux kernel during device detach operations. A local
attacker could possibly use this to cause a denial of service (system
crash). (CVE-2022-1204)

Duoming Zhou discovered race conditions in the AX.25 amateur radio protocol
implementation in the Linux kernel, leading to use-after-free
vulnerabilities. A local attacker could possibly use this to cause a denial
of service (system crash). (CVE-2022-1205)

Qiuhao Li, Gaoning Pan, and Yongkang Jia discovered that the kvm
implementation in the Linux kernel did not handle releasing a virtual cpu
properly. A local attacker in a guest VM coud possibly use this to cause a
denial of service (host system crash). (CVE-2022-1263)

It was discovered that the PF_KEYv2 implementation in the Linux kernel did
not properly initialize kernel memory in some situations. A local attacker
could use this to expose sensitive information (kernel memory).
(CVE-2022-1353)

It was discovered that the implementation of X.25 network protocols in the
Linux kernel did not terminate link layer sessions properly. A local
attacker could possibly use this to cause a denial of service (system
crash). (CVE-2022-1516)

It was discovered that the ACRN Hypervisor Service Module implementation in
the Linux kernel did not properly deallocate memory in some situations. A
local privileged attacker could possibly use this to cause a denial of
service (memory exhaustion). (CVE-2022-1651)

It was discovered that the RxRPC session socket implementation in the Linux
kernel did not properly handle ioctls called when no security protocol is
given. A local attacker could use this to cause a denial of service (system
crash) or possibly expose sensitive information (kernel memory).
(CVE-2022-1671)

Ziming Zhang discovered that the netfilter subsystem in the Linux kernel
did not properly validate sets with multiple ranged fields. A local
attacker could use this to cause a denial of service or execute arbitrary
code. (CVE-2022-1972)

赵子轩 discovered that the 802.2 LLC type 2 driver in the Linux kernel did not
properly perform reference counting in some error conditions. A local
attacker could use this to cause a denial of service. (CVE-2022-28356)

It was discovered that the 8 Devices USB2CAN interface implementation in
the Linux kernel did not properly handle certain error conditions, leading
to a double-free. A local attacker could possibly use this to cause a
denial of service (system crash). (CVE-2022-28388)

It was discovered that the Microchip CAN BUS Analyzer interface
implementation in the Linux kernel did not properly handle certain error
conditions, leading to a double-free. A local attacker could possibly use
this to cause a denial of service (system crash). (CVE-2022-28389)

It was discovered that the EMS CAN/USB interface implementation in the
Linux kernel contained a double-free vulnerability when handling certain
error conditions. A local attacker could use this to cause a denial of
service (memory exhaustion). (CVE-2022-28390)

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.

Learn more about Ubuntu Pro

Update instructions

The problem can be corrected by updating your system to the following package versions:

Ubuntu 22.04

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.